NetSPI'

Public Report:
Android Quick
Share Application
Penetration Test

Google

September 2", 2025

Prepared for:
David Kleidermacher
Rishika Hooda

Prepared by:
Sam Beaumont
Larry Trowell
Ruchit Patel
Paroksh Sharma
Will Strei

NetSPI'

Chapter 1 - Executive Summary
1.1 Engagement Objectives

1.2 Timeframe, Scope, and Testing Information
1.2.1 Timeframe
1.2.2 Scope
1.2.3 Application Binaries

1.3 Summary of Findings
1.4 Methodology Overview

Chapter 2 - Technical Detail
2.1 Overview
2.2 Security Review of Protocol Implementation
2.3 Low Severity Findings

2.3.1 Information Disclosure - Android - Device Logs [Remediated]

NetSPI performed an analysis of Google LLC's implementation of Quick Share to identify vulnerabilities,
determine the level of risk they present to Google, and provide actionable recommendations to reduce
this risk. NetSPI compiled this report to provide Google with detailed information on each vulnerability
discovered within the application, including potential business impacts and specific remediation
instructions.

1.1 Engagement Objectives

NetSPI's primary goal within this engagement was to provide Google with an understanding of the current
level of security in the application. NetSPI completed the following objectives to accomplish this goal:

Identifying application-based threats to and vulnerabilities in the application
Comparing Google's current security measures with industry best practices

= Providing recommendations that Google can implement to mitigate threats and
vulnerabilities and meet industry best practices

Google | NetSPI Confidential

NetSPI'

1.2 Timeframe, Scope, and Testing Information
1.2.1 Timeframe

Testing and verification were performed between August 09, 2025 and August 17, 2025. On August 28,
2025, remediation testing was carried out for the low-severity finding, and the issue was verified
as remediated.

1.2.2 Scope

The scope of this engagement was limited to Google's implementation of Quick Share and risks relevant
to the use of the application from supported devices when transmitting and receiving information. All
other applications and servers were out of scope. All testing and verification were conducted from
outside Google's offices.

1.2.3 Application Binaries

The following table(s) provides details of the application binaries that were in scope for testing:

Description Value

Application Name Quick Share

Operating System Android

Application Package Name com.google.android.mosey

Version Name 1.0.78857848

Version Code 460

SHA256 fbe6a9aebe571b0ed5a20bab54ef3fe6f3fdbc6aelcae8530c5d09809b84ea648

Table 1: Android Application Details

1.3 Summary of Findings

NetSPI's assessment of the Quick Share implementation discovered and validated the low-severity
issue noted below, which has since been remediated. No additional or incremental issues were identified
beyond the known weaknesses inherent to the underlying protocol. Furthermore, NetSPI confirmed that
Google's implementation of its version of Quick Share does not introduce vulnerabilities into the broader
protocol ecosystem.

The findings are as follows:
= 1Low severity vulnerability

Remediation Sta-

Vulnerability Name Severity OWASP Mobile OWASP Web tus
Information Disclosure - Android - Device Logs | Low M§—Inadequate A?—Secyrlty . Remediated
Privacy Controls Misconfiguration

Table 2: Findings Summary

Google | NetSPI Confidential

5] NetSPI

1.4 Methodology Overview

This section outlines the manual and automated test cases executed during the penetration testing
of the Quick Share application. While no high or critical risk findings were identified, the following test
cases demonstrate comprehensive testing across various attack surfaces, including interaction with
Google Play Services, Quick Share, and permissions.

File Handling to and from Android,
iOS and OpenDrop

Validate that file transfers between Android and iOS function correctly, both as sender and
receiver, using standard and custom sharing mechanisms such as OpenDrop. Tested suc-
cessful transmission and reception of different file types (e.g., images, PDFs, text files, zip,
xml, corrupted etc) across platforms. Verified integrity and accessibility of files post-transfer.

Data Leakage in Logs

Ensure that sensitive data (e.g., filenames, paths, file contents, session tokens) is not inad-
vertently written to device logs. Monitored logcat output on Android and system logs on
iOS during file sharing operations. Reviewed logs for potential leaks of file metadata or user
identifiers.

Secure File Transfer

Confirm that the file transfer mechanism uses encrypted channels and does not expose data
in transit. Reviewed application’s use of protocols (e.g., Bluetooth, Quick Share), sniffed traffic
where applicable, and validated use of TLS or end-to-end encryption.

Identify any ability to access or write files outside of the intended application directories

Path Traversal via crafted file names or paths. Attempted to send and receive files with names like ../../,
tested manipulation of file paths during transfer and storage.
Check whether the application enforces limits on the number or frequency of file transfer
et i requests to prevent abuse (e.g., DoS). Repeatedly initiated file sharing requests in rapid

succession and from multiple devices to see if any throttling, blocking, or timeouts were
enforced.

Session Validation

Ensure sessions are valid and authenticated during file sharing, and that expired or invalid
sessions are not accepted. Tested transfer attempts during and after session expiration,
simulated session hijack scenarios, and verified proper session handling.

Examined file discovery and transfer capabilities using Quick Share when interacting with

o iOS devices. Operational in supported scenarios, no informational leak or abuse observed.
Validate that the implementation aligns with secure coding practices and, in coordination
with dynamic testing, ensures that no additional weaknesses are introduced Reviewed SSL

Source Code checks configuration, logging operations, examined the use of unsafe functions and blocks in Rust,

assessed cargo dependency settings, and analyzed the nature of data transmitted and
received between parties.

Hardware checks

The security of the current application version was ensured by validating that previously
identified vulnerabilities (CVEs/Issues) reported against AirDrop are not easily replicable.
Using Frida, incoming and outgoing data were analyzed to examine potential attack vectors
that could be leveraged for lateral or system exploitation, with memory also reviewed to
identify any retained information that should be considered sensitive or potentially exploit-
able. Moreover, gzip parsing(webserver) and XML parsing(plist) were modified with Frida to
detect any obvious flaws in these mechanisms, enabling the identification and addressing
of potential security issues.

Google | NetSPI Confidential

NetSPI'

Chapter 2 - Technical Detail

2.1 Overview

The detailed findings section contains the analysis and documentation of the vulnerabilities identified
within the application. This analysis included:

= Identifying potential vulnerabilities associated with the application

= Assigning appropriate severity rankings to valid vulnerabilities and risks

= Formulating useful action-based recommendations that can improve the security
posture of the IT environment

Vulnerabilities are grouped according to severity. Information for each of the vulnerabilities includes
the following:
Name: The name of the vulnerability.

Severity: Each of the vulnerabilities has been assigned a severity based on its CVSS score. The following
table summarizes the five severity levels:

CVSS Score Severity Description

Vulnerability will result in complete compromise of the affected applications or systems.

e e The vulnerability can be exploited remotely by an unauthenticated user.

Vulnerabilities that may result in significant unauthorized access to sensitive data or
70-8.9 High system or application functionality. Successful exploitation of the vulnerability is likely to
require authentication or depends on conditions beyond the attacker’s control.

Vulnerabilities that may result in partial compromise of the confidentiality, integrity, and

40-6.9 Medium -

availability.

Security flaws that can contribute to additional attacks against the system or application
01-3.9 Low . ..

but do not, by themselves, allow unauthorized access to targeted systems or applications.
0.0 Informational Security best practices that do not have a direct or immediate impact to system or

application security.

Table 3: Severity References

CVSS Score: This field contains the CVSS (Common Vulnerabilities Scoring System) Version 3.1 Base score as well as the
scoring vector used to generate the score. Complete documentation of CVSS can be found at http://www.first.org/cvss.

OWASP Web Category: Reference to the OWASP Top 10 web application security risk categories (2021).
OWASP Mobile Category: Reference to the OWASP Mobile Top 10 application security risk categories (2024).

Affected Assets and Services: Specific assets and associated services on which the vulnerability was found.

Vulnerability Details: Comprehensive explanation of the vulnerability that was found, including a high-level summary of how the
vulnerability works.

Impact: This describes the potential business impact of vulnerability, should it be exploited.
Recommendation: NetSPI's solution for repairing vulnerability or mitigating the problem if no fix is yet available.
Affected URLs and Parameters: URLs and parameters associated with the finding, if applicable.

Verification: Screenshot or sample data from one instance of the finding showing how NetSPI has verified the finding manually,
when possible.

References: These are other resources that have more information on vulnerability.

Google | NetSPI Confidential

NetSPI'

2.2 Security Review of Protocol Implementation

NetSPI's assessment confirmed that Google's implementation of its version of Quick Share does not
introduce vulnerabilities into the broader protocol’s ecosystem.

NetSPI's assessment of the implementation of Quick Share revealed that while it shares specific
characteristics with implementations made by other manufacturers, this implementation is reasonably more
secure. Infact, the process of file exchange is notably stronger, as it doesn't leak any information, which is
a common weakness in other manufacturers’ implementations.

2.3 Low Severity Findings

2.3.1 Information Disclosure - Android - Device Logs [Remediated]

Vulnerability Unique ID: 3574602898

Severity: Low

CVSS V3 Base Score: 2.1 (CVSS:3.1/AV:P/AC:L/PR:L/UI:N/S:U/C:L/I:N/A:N)
OWASP Web Category: A5-Security Misconfiguration

OWASP Mobile Category: M6-Inadequate Privacy Controls

Affected Assets and Services

com.google.android.mosey

Vulnerability Details

The Android application logs sensitive data into the system log of the device including image thumbnails,
and SHA256 hashes of phone numbers and emails under certain circumstances.

Impact

An attacker with physical access to a user’s device may be able to access sensitive information related to
the application in the device's system logs. The severity of the attack can vary depending on the context
and the type of sensitive information stored in the logs.

Recommendation

Do not log sensitive data. Only log compile-time constants whenever possible. Avoid logs that may contain
unexpected or sensitive information depending on the error triggered. Logged data should be limited to
necessary and predictable information.

If sensitive data must be included in logs, it's crucial to sanitize them to protect confidentiality.
Recommended techniques include tokenization, where a token references sensitive data stored securely;
data masking, which alters sensitive information to appear similar but conceals critical details (e.g.,
changing a credit card number to XXXX-XXXX-XXXX-1313); redaction, which completely hides the
information in a field (e.g., replacing a credit card number with XXXX-XXXX-XXXX-XXXX); and filtering,
which uses format strings in logging libraries to modify non-constant values.

Google | NetSPI Confidential

NetSPI'

Verification

The application logged sensitive information to Android device logs, making it accessible to other apps or
users with log access.

1. Connect the rooted Android device with a USB cable to a computer that can run the Android Debug
Bridge command. Run the below commands to capture the logs while running the application.

Command: adb logcat
[TRUNCATED]

08-15 14:58:36.808
cd:6aff:fe34:4a33%mosey0] :

5113 6489 V Mosey.ReceiveProvider:

50219: {

Discover request from /[fe80::4c-

08-15 14:58:36.808 5113 6489 V Mosey.ReceiveProvider: “SenderRecordData” =

08-15 14:58:36.808 5113 6489 V Mosey.ReceiveProvider: <>;

08-15 14:58:36.808 5113 6489 V Mosey.ReceiveProvider: }

08-15 14:58:36.811 5113 6489 V Mosey.ReceiveProvider: Sending discover response: {

08-15 14:58:36.811 5113 6489 V Mosey.ReceiveProvider: “ReceiverComputerName” = “Pixel 10 Pro”;
08-15 14:58:36.811 5113 6489 V Mosey.ReceiveProvider: “ReceiverMediaCapabilities” =

08-15 14:58:36.811 5113 6489 V Mosey.ReceiveProvider: <7b0a 2020 2256 6572 7369 6f6e
223a 2033 2c0a 2020 2243 6f64 6563 7322 3a20 7b

08-15 14:58:36.811 5113 6489 V Mosey.ReceiveProvider: 0a 2020 2020 2268 7663 3122 3a20 7b0Oa
2020 2020 2020 2250 726f 6669 6c65 7322 3a20

08-15 14:58:36.811 5113 6489 V Mosey.ReceiveProvider: 7b0Oa 2020 2020 2020 2020 2256 5449 7348
4452 4l16c 6¢c6f 7765 644f 6ed44 6576 6963 65

08-15 14:58:36.811 5113 6489 V Mosey.ReceiveProvider: 22 3a20 6661 6c73 652c 0a20 2020 2020
2020 2022 5654 5375 7070 6£72 7465 6450 726f

08-15 14:58:36.811 5113 6489 V Mosey.ReceiveProvider: 6669 6c65 7322 3a20 5b0a 2020 2020 2020
2020 2020 312c 0a20 2020 2020 2020 2020 20

08-15 14:58:36.811 5113 6489 V Mosey.ReceiveProvider: 32 2c0a 2020 2020 2020 2020 2020 340a
2020 2020 2020 2020 5d2c 0a20 2020 2020 2020

08-15 14:58:36.811 5113 6489 V Mosey.ReceiveProvider: 2022 5654 5065 7250 726f 6669 6c65 5375
7070 6£72 7422 3a20 7b0a 2020 2020 2020 20

08-15 14:58:36.811 5113 6489 V Mosey.ReceiveProvider: 20 2020 2231 223a 207b 0a20 2020 2020
2020 2020 2020 2022 5654 4d61 7844 6563 6f64

08-15 14:58:36.811 5113 6489 V Mosey.ReceiveProvider: 654c 6576 656c 223a 2031 3830 2c0O0a 2020
2020 2020 2020 2020 2020 2256 5449 7348 61

08-15 14:58:36.811 5113 6489 V Mosey.ReceiveProvider: 72 6477 6172 6541 6363 656c 6572 6174
6564 223a 2074 7275 650a 2020 2020 2020 2020

[TRUNCATED]

08-15 14:58:40.069 5113 5113 V Mosey.ReceiveProvider: Scan result: ScanResult{device=XX:XX:XX-
:XX:C2:16, scanRecord=ScanRecord [mAdvertiseFlags=26, mServiceUuids=null, mServiceSolicitationU-
uids=[], mManufacturerSpecificData={76=[5, 18, 0, 0, 0, O, O, O, O, O, 2, 26, 34, 113, -72, -108,
10, -25, 67, 0]}, mServiceData={}, mTxPowerLevel=-2147483648, mDeviceName=null, mTransportDiscov-
eryData=null], rssi=-40, timestampNanos=13385662856852, eventType=16, primaryPhy=1, secondary-

Phy=0, advertisingSid=255, txPower=127, periodicAdvertisingInterval=0}

[TRUNCATED]

08-15 12:39:36.746 5113 6489 D NSDictionaryCallback: Request: POST /Ask Host:

[£e80: :5c8f:a4ff:feB8e:3e84%awdl0] :46127

08-15 12:39:36.746 5113 6489 D NSDictionaryCallback: Content-Length: 283

08-15 12:39:36.746 5113 6489 D NSDictionaryCallback: Content-Type: application/octet-stream
08-15 12:39:36.746 5113 6489 D NSDictionaryCallback: Connection: keep-alive

08-15 12:39:36.746 5113 6489 D NSDictionaryCallback: Accept: */*

08-15 12:39:36.746 5113 6489 D NSDictionaryCallback: User-Agent: AirDrop/1.0

08-15 12:39:36.746 5113 6489 D NSDictionaryCallback: Accept-Language: en-us

08-15 12:39:36.746 5113 6489 D NSDictionaryCallback: Accept-Encoding: br, gzip, deflate
08-15 12:39:36.746 5113 6489 D NSDictionaryCallback:

08-15 12:39:36.750 5113 6489 V Mosey.ReceiveProvider: Ask request from /[fe80::40fl:c9ff:fec-
b:9208%mosey0] : 58001 : {

08-15 12:39:36.750 5113 6489 V Mosey.ReceiveProvider: “BundleID” = “com.apple.finder”;
08-15 12:39:36.750 5113 6489 V Mosey.ReceiveProvider: “ConvertMediaFormats” = NO;

08-15 12:39:36.750 5113 6489 V Mosey.ReceiveProvider: “Items” =

08-15 12:39:36.750 5113 6489 V Mosey.ReceiveProvider: (“tel:+12345678907) ;

Google | NetSPI Confidential

NetSPI'

Verification continued

08-15 12:39:36.750 5113 6489 V Mosey.ReceiveProvider: “SenderComputerName” = “\Ud83d\Udc68\
U200d\Ud83d\Udc69\U200d\Ud83d\Udc67\U200d\Ud83d\Udc66\Ud83d\Udc68\U200d4\Ud83d\Udc69\U200d\Ud83d\
Udc67\U200d\Ud83d\Udc66\Ud83d\Udc68\U200d\Ud83d\Udc69\U200d\Ud83d\Udc67\U200d\Ud83d\Udc66” ;
08-15 12:39:36.750 5113 6489 V Mosey.ReceiveProvider: “SenderID” = “b5albe54ecll”;

08-15 12:39:36.750 5113 6489 V Mosey.ReceiveProvider: “SenderModelName” = “OpenDrop”;

08-15 12:39:36.750 5113 6489 V Mosey.ReceiveProvider: }

08-15 12:39:36.751 5113 6489 I Mosey.ReceiveProvider: Incoming transfer from EXXD: id=null
08-15 12:39:36.751 5113 6489 I Mosey.ReceiveProvider: Shared files in Ask request: []

08-15 12:39:36.757 5113 6489 I Mosey.ReceiveProvider: Shared URLs in Ask request: [TextAttach-
ment<id: 0, textBody: tel:+1234567890, type: URL, size: 15, title: tel:+1234567890, isSensitive-
Text: false>]

[TRUNCATED]

References

= https://developer.android.com/privacy-and-security/risks/log-info-disclosure
= https://mas.owasp.org/MASTG/best-practices/MASTG-BEST-0002/

© 2025, NetSPI
This confidential document is produced by NetSPI for the internal use of Google. All rights reserved. Duplication,
distribution, or modification of this document without prior written permission of NetSPI is prohibited.

All trademarks used in this document are the properties of their respective owners.

Google | NetSPI Confidential

